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ABSTRACT

The steered response power - phase transform (SRP-
PHAT) algorithm has become an ubiquitous tool in sig-
nal source localisation using sensor arrays. This paper in-
vestigates four different implementation strategies for the
SRP-PHAT algorithm. In this context, implementation us-
ing shaped response interpolation versus plain wideband
position estimation is investigated, as are two different data
averaging strategies. Each of the four combinations yields a
different computational complexity and localisation accu-
racy. Simulations are used to compare the localisation ac-
curacy and the computational requirements are calculated
based on average number of floating point operations per
position estimate.

1. INTRODUCTION

Signal source positioning of wideband signal sources using
sensor arrays has become a common problem encountered
in a wide variety of applications, including radar [1], ra-
dio [2], sonar [3] and acoustics [4]. A common algorithm
used in these applications is the steered response power -
phase transform (SRP-PHAT) algorithm. The algorithm is
an extension of the generalised cross correlation (GCC) al-
gorithm pioneered by Knapp and Carter in 1976 [5]. It was
later extended by Rabinkin in 1996 [6] and reached its cur-
rent form in the works of Johansson in 2002 [7] and 2005
[4].

The SRP-PHAT algorithm produces a source position
estimate based on the time delay difference of arrival of a
wavefront across two or more sensor elements. The algo-
rithm operates by extracting the phase difference between
the microphone signals from an estimate of their cross-
spectral density (CSD) function. There exist two possible
approaches for reducing the uncertainty of the position es-
timate. The first is to average the CSD over time (referred
to as CSD averaging CA), and the second is to use instan-
taneous CSD estimates and average the resulting position
estimates (referred to as post estimation averaging PA).
These averaging approaches result in two different imple-
mentation strategies for the algorithm.

The SRP-PHAT algorithm can operate both on wide-
band (WB) and on narrowband (NB) sensor signals. How-
ever, it is possible to apply shaped response interpolation
(SRI) [8] to project the CSD of wideband signals onto a
single frequency band, which makes it possible to use the
narrowband version of the SRP-PHAT to estimate the lo-
cation of the a wideband signal source. This results in two
additional implementation approaches for the algorithm.

Given the two averaging strategies and the two imple-
mentation approaches for wideband sensor data, a total of
four different implementations are possible. Each of these
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Fig. 1. Signal model.

implementations yields a unique computational complexity
and localisation accuracy.

The paper is organised as follows: Section 2 contains a
description of the signal model. Section 3 presents a brief
review of the fundamental SRP-PHAT and SRI algorithms
and description of the different implementations. The com-
putational requirements are investigated in Section 4, fol-
lowed by an evaluation of the performance in Section 5.
The paper is concluded in Section 6

2. SIGNAL MODEL

To limit the extent of the theory and evaluation sections,
the discussion is limited to far-field localisation using lin-
ear arrays with uniformly spaced omni directional sensor
elements, indexed m ∈ {1, 2, . . . ,M}. Consider a two di-
mensional Cartesian coordinate system with origin placed
at the centre of the array, and a sensor spacing of d me-
ters. Furthermore, an isotropic background noise field un-
correlated to any source signals is assumed, where the noise
signal at each sensor element is denoted vm(t). The source
signal is a spectrally white wideband source denoted s(t),
which originates from a location at an angle θ in the far-
field of the array. The source signal is convolved by a set
of linear time invariant transfer functions denoted hm(t, θ),
m ∈ {1, 2, . . . ,M}. The resulting sensor signals are denoted
xm(t), and are defined as

xm(t) = s(t) ∗ hm(t, θ) + vm(t) m ∈ {1, 2, . . . ,M}, (1)

where ∗ denotes convolution. The scenario is depicted in
Fig. 1.

The source signals are band-limited and sampled with a
sample period T , xm(ℓ) = xm(t · T ).

Assuming a direct line of sight between the source and
the sensors, the transfer functions hm(t, θ) can be modelled



as hm(t, θ) = Amδ(t− ∆m) + gm(t), where δ(t) is a Dirac,
Am is an amplitude function, ∆m is bulk delay in seconds
and gm(t) is the transfer function minus the direct path.
When combined with the fact that the the source is in
the far-field, the wavefront will arrive at the sensors as a
distorted plane wave, where the time delay difference of
arrival in samples between the sensor elements m and n is

τm,n(θ) = (∆m − ∆n)/T

≃
(m− n) cos θ

c · T
,

(2)

where c is the propagation speed of the wave. Please note
that τm,n(θ) contains the angle of arrival for the wave front,
which is our parameter of interest.

3. THE SRP-PHAT ALGORITHM

Given the above signal model, the CSD between sensor el-
ements m and n for the frequency ωk, k ∈ {1, 2, . . . , K}, is
defined as

Φxm,n(ωk) = F {E [xm(ℓ)xn(ℓ+ ρ)]}

≃ Pm,ne
jωkτm,n(θ) + Φgm,n(ωk) + Φvm,n(ωk),

(3)

where F {·} and E [·] denotes the Fourier transform and the
expected value, respectively. The power of the direct wave
is denoted Pm,n, and Φvm,n(ωk) and Φgm,n(ωk) are CSDs
of the background noise and the transfer function minus
the direct path, respectively.

The CSD between two sensor elements can be estimated
from the sensor signals, by splitting up the signals into K
element segments

bΦxm,n(ωk) =
LX

ℓ=1

Xℓ(ωk, m)X∗

ℓ (ωk, n), (4)

where Xℓ(ωk,m) is the kth FFT bin of sensor m and signal
segment ℓ, and ()∗ denotes complex conjugate.

The CSD matrix Φx(ωk) is defined by gathering the CSD
for each microphone pair into a matrix as [Φx(ωk)]m,n =
Φxm,n(ωk).

3.1. The PHAT transform

The PHAT transform is originally an ad-hoc method to im-
prove phase function estimates. It is used here based on the
assumption that the power of the sensor signals does not
carry useful information about the source location and is
therefore discarded. The PHAT transform yields the rela-
tive phase function ψm,n(ωk) and is defined as

ψm,n(ωk) =
bΦxm,n˛̨

˛bΦxm,n(ωk)
˛̨
˛
. (5)

Note that in a noise free scenario (Φv ≡ 0) and free space
propagation (Φg ≡ 0), the relative phase function simplifies
to ψm,n(ωk) = ejωkτm,n(θ).

3.2. The SRP algorithm

The shaped response function for a single frequency band
is defined as

P (ωk, ν) =

MX

m=1

MX

n=1

ψm,n(ωk)ejωkτm,n(ν). (6)

Thus, in a noise free scenario and free space propagation,
the main peak of the function is found at ν ≡ θ. This peak
will become increasingly distorted as the noise increases
and as the tail of the transfer function grows.

Using the steered response function the narrowband
SRP-PHAT algorithm is defined as the optimisation prob-
lem

θ̂nb = arg max
ν

P (ω0, ν), (7)

where θ̂n is an estimate of the angle of arrival of the wave
front. The wideband version of the algorithm simply per-
forms the optimisation across all frequency bands as

θ̂wb = arg max
ν

KX

k=1

P (ωk, ν). (8)

In both cases the optimisation is performed over one vari-
able and can be solved using for example the golden search
algorithm.

3.3. Shaped response Interpolation (SRI)

SRI works by designing a set of projection matrices
T (ω0, ωk), k ∈ {1, 2, . . . ,K} that are used to project the
CSD matrix for every frequency band onto a single fre-
quency ω0 according to

Φx(ω0) =

KX

k=1

T (ω0, ωk)Φx(ωk)T T (ω0, ωk). (9)

The narrowband version of the SRP-PHAT can subse-
quently be applied to Φx(ω0) to locate the signal source.

3.4. Averaging approaches

As stated in the introduction it is possible to perform av-
eraging either on the CSD matrix (CA) or on the location
estimate (PA). When PA is used, the number of signal seg-
ments used to estimate the CSD matrix yields L ≡ 1. This
can be used to rewrite (7) by insertion of (2), (4) and (5),
as

Pℓ(ωk, ν) =

˛̨
˛̨
˛

MX

m=1

Xℓ(ωk,m)e
jωkm cos(ν)

cT

|Xℓ(ωk,m)|

˛̨
˛̨
˛

2

. (10)

This expression requires far fewer calculations to evaluate
compared to (7).

When PA is used in conjunction with SRI, it is possible
to save calculations by rewriting (9) according to

Φx(ω0) =
KX

k=1

B(ω0, ωk)B(ω0, ωk)H . (11)

where ()H denotes Hermitian transpose and Bℓ(ω0, ωk) =
T (ω0, ωk)Xℓ(ωk) in which

Xℓ(ωk) =
ˆ
Xℓ(ωk, 1) Xℓ(ωk, 2) · · ·Xℓ(ωk,M)

˜T
. (12)

4. COMPUTATIONAL REQUIREMENTS

4.1. Optimisation algorithm

The optimisation algorithm employed here is the Golden
search algorithm with parabolic interpolation, with a termi-
nation threshold of 10−4 samples. A Mone Carlo simulation
of the different implementations indicated that the average
number of objective function evaluations is 9.5 for the WB



Prior to optimisation
Operation WB-CA WB-PA NB-CA NB-PA

Real divisions KM2 KM M2 M2

Real additions KM2 KM M2 M2

Real multiplications 2KM2 2KM 2M2 2M2

Complex to real multiplications KM2 KM KM3 K(M2 +M)
Complex additions 2KM2 3KM2 KM2

Complex multiplications KM2 KM2

Real square root KM2 KM M2 M2

During each step of the optimisation
Operation WB-CA WB-PA NB-CA NB-PA

Real additions K K
Real multiplications KM KM M M
Complex additions KM2 KM M2 M2

Complex multiplications 2KM2 2KM 2M2 2M2

Complex exponential 2M 2M 2M 2M

Table 1. Number of operations for each implementation.

algorithms and 9.2 for the NB algorithms. The simulations
also showed that averaging method did not impact on the
number of objective function evaluations.

The Golden search algorithm itself has very low com-
putational requirements compared to the number of cal-
culations required to evaluate the objective functions. The
computations required to execute the Golden search algo-
rithm are therefore excluded from the final results to im-
prove clarity.

4.2. Objective functions

The following steps can be taken to reduce the number of
calculations required to execute the different implementa-
tions:

1. In the WB algorithms, it is possible to rewrite the
complex exponential according to

ejωkτm,n(ν) = ejωk−1τm,n(ν) · ejω1τm,n(ν),

as the frequency points ωk are uniformly spaced. This
can be used to speed up the WB algorithms signifi-
cantly as the evaluation of the complex exponential
requires a large number of floating point operations
(FLOPs).

2. The PHAT and the SRI transformations can be per-
formed in advance of the optimisation algorithm.

3. The computational cost of the complex exponential
used in all implementations (except WB PA), can be
reduced by using (2)

ejωkτm,n(ν) = e
jωkm cos(ν)

cT · e−
jωkn cos(ν)

cT .

This further reduces the number of complex exponen-
tials that must be calculated in the various algorithms
from M2 to M .

4. The computational complexity in calculating the av-
erage in (4) can be reduced using a sliding window
implementation, according to

bΦxm,n,ℓ(ωk) = bΦxm,n,ℓ−1(ωk)+

Xℓ(ωk, m)X∗

ℓ (ωk, n)−

Xℓ−(L+1)(ωk,m)X∗

ℓ−(L+1)(ωk, n).

The number of operations required to evaluate the objec-
tive function for each of the implementations are presented
in Table 1. The table is split in two, where the first part
tabulates the calculations that can be made prior to the
optimisation algorithm and the second part tabulates the
calculations required for each evaluation of the objective
function. The table shows that all implementation strate-
gies exhibits linear growth of the computational complexity
with respect to the number of samples per segment K. The
table also shows that the growth of the computational com-
plexity with regards to the number of sensors M , is linear
for the WB-PA, quadratic for the WB-CA and the NB-PA,
and cubic for the NB-CA implementations. Furthermore,
the table shows that the computational complexity is in
general quite large for both the CA implementations.

4.3. Computational load

The number of FLOPs per operation is displayed in Ta-
ble 2. The values displayed in the table are taken from typ-
ical implementations of the different operations. The total
number of FLOPs per position estimate (FLOPE) can be
calculated by combining Tables 1 and 2. The result from
the calculation for different values of M and K is displayed
in Figs. 2 and 3, respectively. The figures show that the
most computationally efficient implementation is the WB-
PA if the number of sensors is large and the NB-PA if the
number of sensors is small and the number of samples per
segment is large.

Real divisions 16
Real additions 1
Real multiplications 1
Complex to real multiplications 2
Complex additions 2
Complex multiplications 6
Real square root 56
Complex exponential 270

Table 2. FLOPs per operation.
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Fig. 2. Average number of floating point operations
per position estimate versus the number of sensors for
K = 256 samples per segment. Key: WB-CA (◦), WB-
PA (∗), NB-CA (+), NB-PA (•)
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Fig. 3. Average number of floating point operations
per position estimate versus the number of samples
per segment for M = 16 sensors. Key: WB-CA (◦),
WB-PA (∗), NB-CA (+), NB-PA (•)

5. PERFORMANCE EVALUATION

The four implementations are evaluated with respect to
root mean square error (RMSE) between the estimated
and actual source direction for different signal to noise ra-
tios (SNR). The results are presented in Fig. 4, and show
that the NB implementations perform slightly worse than
the WB implementations of the algorithm. The figure also
shows that the difference between averaging the CSD ma-
trix compared to performing post averaging of the location
estimates is close to negligible.

6. CONCLUSIONS

Four different implementations of the commonly used SRP-
PHAT wideband sensor array localisation algorithm are
presented. The theoretical description of the algorithm lists
a number of methods for reducing the number of calcula-
tions required to execute the implementations. An analysis
of the resulting computational complexity shows that if the
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Fig. 4. Estimation accuracy RMSE vs SNR. Key: WB-
CA (◦), WB-PA (∗), NB-CA (+), NB-PA (•)

number of sensors is large, the lowest computational load
is given by the wideband post estimation averaging imple-
mentation of the algorithm. The implementation are also
evaluated with respect to localisation accuracy. This evalu-
ation shows that the difference between the CSD and post
estimation averaging approaches is negligible and that the
wideband implementations yields the lowest estimation er-
ror.
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